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Preface

Mortality is generally considered relatively easy to forecast, particu-
larly when the forecasting horizon is short. In longer periods however,
its course may be a�ected by various changes brought about by all
kinds of disturbances and events. A case in point is the health crisis
in Poland of the 1970s and 1980s [Okólski 2003]. In such cases, it is of
key importance that appropriate assumptions and an adequate model
are selected.

Mortality forecasting is usually supported by extrapolative models,
making use of the regularity found in age patterns and trends of death
rates or probabilities over time.

There are several reasons why one should learn more about morta-
lity models. Forecasting of mortality has a wide range of applications
outside the �eld of statistics and mathematics. It is of fundamen-
tal importance in such areas as funding of public or private pensions
and life insurance. Annuity providers and policy makers use mortality
projections to determine appropriate pension bene�ts, to assess retire-
ment income or life insurance products, to hold additional reserving
capital or to manage the long term demographic risk. Thus, one of
the important question arises: What is the best way to forecast future
mortality rates and to model the uncertainty of such forecasts? A key
input to address this question is the development of advanced mortality
modeling methodology.

These notes are an attempt to capture the stochastic nature of
mortality by approaching the subject of mortality modeling and fore-
casting from a new theoretical point of view, using theory of stochastic
di�erential equations, theory of fuzzy numbers and complex numbers.

The book is addressed to tertiary students, doctoral students and
specialists in the �elds of demography, life insurance, statistics and
economics. This research project was funded by the National Science
Center pursuant to its decision no. 2015/17/B/HS4/00927.
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Abbreviation and notation

Throughout this book, the following abbreviations for mortality models
have been adopted:

SLC Standard Lee�Carter
LCH Lee�Carter hybrid
DLC Dynamic Lee�Carter
DDLC Discrete Dynamic Lee�Carter model
LCH Lee�Carter hybrid
DLCH discrete Lee�Carter hybrid
FLC Fuzzy Lee�Carter
EFLC Extended Fuzzy Lee�Carter
MFLC Modi�ed Fuzzy Lee�Carter
CFLC Complex-Function Lee�Carter
QVLC Quaternion-Valued Lee�Carter
V Vasi£ek
DV Discrete Vasi£ek
VH Vasi£ek hybrid
DVH Discrete Vasi£ek hybrid
VHM Vasi£ek hybrid moment
DVHM Discrete Vasi£ek hybrid moment
MV Modi�ed Vasi£ek
DMV Discrete Modi�ed Vasi£ek
MVH Modi�ed Vasi£ek hybrid
DMVH Discrete Modi�ed Vasi£ek hybrid
MVHM Modi�ed Vasi£ek hybrid moment
DMVHM Discrete Modi�ed Vasi£ek hybrid moment
CIR Cox�Ingersoll�Ross
DCIR Discrete Cox�Ingersoll�Ross
CIRH Cox�Ingersoll�Ross hybrid
DCIRH Discrete Cox�Ingersoll�Ross hybrid
CIRHM Cox�Ingersoll�Ross hybrid moment
DCIRHM Discrete Cox�Ingersoll�Ross hybrid moment
MCIR Modi�ed Cox�Ingersoll�Ross
DMCIR Discrete Modi�ed Cox�Ingersoll�Ross
MCIRH Modi�ed Cox�Ingersoll�Ross hybrid
DMCIRH Discrete Modi�ed Cox�Ingersoll�Ross hybrid
MCIRHM Modi�ed Cox�Ingersoll�Ross hybrid moment
DMCIRHM Discrete Modi�ed Cox�Ingersoll�Ross hybrid moment
GOB Giacometti�Ortobelli�Bertocchi
DGOB Discrete Giacometti�Ortobelli�Bertocchi
GOBH Giacometti�Ortobelli�Bertocchi hybrid
DGOBH Discrete Giacometti�Ortobelli�Bertocchi hybrid
GOBHM Giacometti�Ortobelli�Bertocchi hybrid moment
DGOBHM Discrete Giacometti�Ortobelli�Bertocchi hybrid moment



14

MP Milevsky�Promislow
DMP Discrete Milevsky�Promislow
MMP Modi�ed Milevsky�Promislow
DMMP Discrete Modi�ed Milevsky�Promislow
DMPH Discrete Milevsky�Promislow hybrid
MPHM Milevsky�Promislow hybrid moment
DMPHM Discrete Milevsky�Promislow hybrid moment
MMPH Modi�ed Milevsky�Promislow hybrid
DMMPH Discrete Modi�ed Milevsky�Promislow hybrid
MMPHM Modi�ed Milevsky�Promislow hybrid moment
DMMPHM Discrete Modi�ed Milevsky�Promislow hybrid moment
MP-2DF Milevsky�Promislow, with 2 dependent �lters
MPH-2DF Milevsky�Promislow hybrid, with 2 dependent �lters
MPHM-2DF Milevsky�Promislow hybrid moment, with 2 dependent �lters
DMPHM-2DF Discrete Milevsky�Promislow hybrid moment

with 2 dependent �lters
MP-2IF Milevsky�Promislow, with 2 independent �lters
MPH-2IF Milevsky�Promislow hybrid, with 2 independent �lters
MPHM-2IF Milevsky�Promislow hybrid moment, with 2 independent �lters
DMPHM-2IF Discrete Milevsky�Promislow hybrid moment

with 2 independent �lters
MP-VLF Milevsky�Promislow with vector linear �lter
MPH Milevsky�Promislow hybrid
MPH-VLF Milevsky�Promislow hybrid, with a vector linear �lter
MPHM-VLF Milevsky�Promislow hybrid moment, with a vector linear �lter
DMPH-VLF Discrete Milevsky�Promislow hybrid, with a vector linear �lter



Introduction

The phenomenon of mortality has been studied for many centuries.
In the early 3rd c., a Roman jurist, Domitius Ulpianus, created for �scal
purposes the so-called Ulpian table containing life expectancies for the
citizens of the Roman Empire. As historical sources do not mention
what calculation method and source materials he had used, the Ulpian
table is mainly of historical value [Rosset 1979, pp. 102�103].

It is recognized that the father of the mortality table methodology
is John Graunt (1620�1674), since his work [Graunt, 1662] where mor-
tality of generations of London residents was examined. Graunt based
his analysis on the records of London parishes, but did not specify
which periods they concerned. Graunt's research was continued by an
English astronomer Edmond Halley (1656�1742), who proposed mor-
tality tables for the Wrocªaw population [Halley 1693].

The modern methodology for constructing mortality tables, also
known as �life-tables�, is credited to Chin L. Chiang (1914�2014) and
his book [Chiang 1968]. The more works on life-tables and mortality
models come from 19th c. [Gompertz 1825, Thiele, Sprague 1871], but
it is only during the last decades that the mortality modeling methodo-
logy started to develop, as evidenced by numerous books on this sub-
ject [Rosset 1979, Keilman 1990, Okólski 1990, Benjamin, Pollard 1993,
Kannisto 1994, Tabeau et al. 2001, Keilman 2005, Alho, Spencer 2005,
Girosi, King 2006, K�edelski, Paradysz 2006, Rossa et al. 2011].

Since the introduction of the Lee�Carter model [Lee, Carter 1992]
proposed to forecast the trend of age-speci�c mortality rates, a range
of mortality models have been proposed with modeling the probability
of death, the age-speci�c mortality rate or the force of mortality.

Among mortality models three main approaches can be identi�ed:
extrapolation, expectation and explanation [Pitacco 2004, Booth 2006,
Tabeau et al. 2001]. The most common one is an extrapolative approach
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which uses a real or fuzzy variable functions of age and time to de-
scribe patterns and trends in death probabilities, mortality rates (or
their transformations) and other measures [Heligman, Pollard 1980,
Brouhns et al. 2002, Lee,Miller 2001, Renshaw,Haberman 2003a, 2003b,
2003c, 2006, 2008, Koissi, Shapiro 2006, Cairns et al. 2006, 2008a, 2008b,
2009, 2011, Denuit 2007, Debon et al. 2008, Haberman, Renshaw 2008,
2009, 2011, Hatzopoulos, Haberman 2011, Fung et al. 2017].

Mortality models can be divided also into two main categories:
static and dynamic models. Models in the �rst group are based on some
algebraic equations, while in dynamic models of the second group the
force of mortality (the intensity process) is expressed as a solution of
stochastic di�erential equations [Vasi£ek 1977, Cox et al. 1985a, 1985b,
Janssen,Skiadas 1995, Milevsky, Promislow 2001, Dahl 2004, Bi�s 2005,
Bi�s,Denuit 2006, Schrager 2006, Bravo, Braumann 2007, Yashin 2007,
Hainaut,Devolder 2007, 2008, Luciano et al. 2008, Luciano,Vigna 2008,
Plat 2009, Bayraktar et al. 2009, Bi�s et al. 2010, Coelho et al. 2010,
Giacometti et al. 2011, Russoet al. 2011, Wanget al. 2011, Hainaut 2012,
Rossa, Socha 2013].

Unfortunately, the simple dynamic models based on stochastic di�e-
rential equations can be inadequate to describe demographic processes.
In particular, they may fail to explain evolution of the phenomena,
meaning that their behavior changes in continuous time or discrete
time intervals. To make up for this disadvantage, researchers put for-
ward a new type of models, called hybrid models, which account for
interactions between continuous and discrete dynamics.

Hybrid models, or switching models [Boukas 2005], are construc-
ted as the generalizations of the models with switching points that
have been already used for automatic control and for random struc-
ture models [Kazakov, Artemiev 1980] describing phenomena within
mechanics, biology, economics or empirical sciences. The authors of
some studies have proposed complex mortality models sharing charac-
teristics with the hybrid models [Bi�s,Denuit 2006, Bi�s et al. 2010,
Hainaut 2012, Rossa, Socha 2013].

For the purposes of this study, a hybrid system will henceforth be
understood as a family of static or dynamic models where the switch-
ings take place according to some switching rule. The dynamic models
will be described using stochastic di�erential equations. There exists
a class of equations for which analytical solutions of relatively complex
structure can be found, therefore a new group of hybrid models will
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be proposed called the moment hybrid models. The idea underlying
their construction involves the replacement of the stochastic models by
equivalent di�erential equations for moments.

Another promising approach to mortality modeling o�ers theory
of fuzzy numbers. It is well-known that the main di�culty in the
applications of the Lee�Carter model is due to the assumed homo-
geneity of random terms. However, this property is not con�rmed by
the real-life data. The problem prompted search for solutions that
could do without this assumption. One of the possible options is to
set research in the framework of the fuzzy number theory. This line of
thinking was adopted by [Koissi, Shapiro 2006], where empirical obser-
vations and parameters of the Lee�Carter model were converted into
fuzzy symmetric triangular numbers.

Unfortunately, the Koissi�Shapiro model involves some di�culties,
which arise from the necessity to �nd the minimum of a criterion func-
tion containing a max-type operator and cannot be solved using stan-
dard optimization algorithms. One approach to such a problem can be
applying the Banach algebra of oriented fuzzy numbers (OFN) deve-
loped by [Kosi«ski et al. 2003]. The results of using this algebra to the
Koissi�Shapiro model have been published in [Szyma«ski, Rossa 2014].

A more sophisticated modi�cation of the Koissi�Shapiro model in-
volves the replacement of the Banach OFN algebra by the Banach
C∗�algebra to allow the use of the Gelfand�Mazur theorem about iso-
metric isomorphism between the C∗�algebra and the Banach algebra of
complex functions and, consequently, to move the optimization prob-
lem into the framework of complex analysis. To our best knowledge,
this is an innovative approach to mortality modeling.

This book has the following structure. In Chapter 1, basic mor-
tality characteristics and some static and dynamic mortality models
are discussed, especially the oldest historical mortality models (the
so-called �mortality laws�), the well-known Lee�Carter model with its
extensions and generalizations, the Vasi£ek and Cox�Ingersoll-Ross
models, the Giacometti�Ortobelli�Bertocchi model and some variants
of the Milevsky�Promislow model. Chapter 2 introduces theoretical
backgrounds of hybrid modeling. In Chapter 3, hybrid counterparts of
the dynamic models presented in Chapter 1 are provided and some es-
timation procedures are proposed. Chapter 4 discusses the theoretical
underpinnings of the fuzzy mortality modeling based on the algebra of
Oriented Fuzzy Numbers (OFN), whereas Chapter 5 presents mortality
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models from the perspective of the so-called modi�ed fuzzy numbers
(MFN) and complex functions. Chapter 6 illustrates results of estima-
tions of some proposed models, the parameters of which were estimated
using empirical mortality data sets. The comparative analysis of the
models' prediction accuracy is also performed.



Chapter 1

Basic mortality characteristics and

models

1.1. Introduction

Demographic models are an attempt to generalize and simplify real
demographic processes by means of mathematical functions or a set
of mathematical relations in order to approximate possible variations
observed in the real data and to support demographic forecasting.

In this chapter basic notions, relations and some discrete-time as
well as continuous-time extrapolative mortality models are introduced.

The main attention is focused on the well-known Lee�Carter model,
its generalizations, the Vasi£ek and Cox�Ingersoll�Ross models as well
as the Milevsky�Promislow and Giacometti�Ortobelli�Bertocchi mo-
dels. They will be converted to hybrid models in Chapter 3.

1.2. Discrete-time mortality frameworks

1.2.1. Age-speci�c rates and probabilities of death

The de�nition of a mortality rate used in this book draws on the
general de�nition of a cohort (or period) demographic rate de�ned as
a ratio of the number of demographic events occurring in some de�ned
cohort (or in a real population within some de�ned time period) to
the time-to-exposure, understood as the number of time units lived
by the cohort (or by the population during the given time period)
[Preston et al. 2001, pp. 5�32].

If person-years are used in the denominator, a demographic rate
is termed �an annualized rate�. Below the de�nitions of both a co-
hort and a period annualized age-speci�c mortality rates are provided
[Rossa et al. 2011, pp. 229�231].
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An important notion used in the De�nition 1.1 is �a cohort�, de�ned
as a real or hypothetical aggregate of individuals that experience a spe-
ci�c demographic event, e.g. births, during a speci�c time interval.
The cohort is identi�ed by the event itself and by its time frame.

For the purposes of this discussion, let index t indicate a calendar
year from the given set {1, 2, . . . , T}, and index x the attained age,
meaning that it takes values from the set {0, 1, . . . , X}, where X is the
�xed upper age limit.

De�nition 1.1. A cohort age-speci�c mortality rate m(s)
x in the s-th

cohort is a ratio of the number of deaths, D(s)
x , among individuals aged

x years last birthday to the number of person-years, K(s)
x , lived in the

age range [x, x+ 1)

m(s)
x =

D
(s)
x

K
(s)
x

. (1.2.1)

De�nition 1.2. A period age-speci�c mortality rate mx,t is a ratio of
the number of deaths, Dx,t, among individuals in the age range [x, x+1)
years during the calendar year t to the number of person-years, Kx,t,
lived in th age interval [x, x+ 1) during this year

mx,t =
Dx,t

Kx,t

. (1.2.2)

It is worth noting that the denominators K(s)
x in (1.2.1) and Kx,t

in (1.2.2) can be treated as the number of individuals exposed to the
risk of death in the given age interval or in the age-time interval, re-
spectively. In the case of (1.2.2) the denominator is usually replaced
by the midyear population L̄x,t, lived in the age range [x, x+ 1) during
the given year t. Therefore, period mortality rates (1.2.2) are often
described as central death rates because of a midyear population used
in the denominator.

For convenience (1.2.1), (1.2.2) are often expressed in thousands as

m(s)
x =

D
(s)
x

K
(s)
x

· 1 000, mx,t =
Dx,t

Kx,t

· 1 000. (1.2.3)

In a more general discrete approach, it is possible to consider an age
interval [x, x+n), where n ∈ N and n > 1. The cohort age-speci�c mor-
tality rates (1.2.1) are then denoted as nm

(s)
x and the period age-speci�c

mortality rates (1.2.2) as nmx,t.




